Available online at www.sciencedirect.com

Journal of Sound and Vibration 268 (2003) 635-636
JOURNAL OF SOUND AND VIBRATION
www.elsevier.com/locate/jsvi

Author's reply ${ }^{\text {an }}$
Hsien-Keng Chen
Department of Industrial Management, Shiuping Institute of Technology, No. 11, Gungye Rd., Dali City, Taichung, Taiwan, Republic of China
Received 24 February 2003

In Ref. [1], the author studied the dynamic behaviors of a symmetric gyro with linear-plus-cubic damping mounted on a vibrating base. The system is excited by a harmonic force $\bar{\ell} \sin \omega t$. With the definitions

$$
x_{1}=\theta, x_{2}=\dot{\theta}, f=\frac{M g \bar{\ell}}{I_{1}}
$$

Fig. 1. The bifurcation diagram for x_{1} in the range $32.0 \leqslant f \leqslant 37.0$.

[^0]the equation of motion governing the nutation θ of the gyro is given by [1]
\[

\left\{$$
\begin{array}{l}
\dot{x}_{1}=x_{2} \tag{1}\\
\dot{x}_{2}=-\alpha^{2} \frac{\left(1-\cos x_{1}\right)^{2}}{\sin ^{3} x_{1}}-c_{1} x_{2}-c_{2} x_{2}^{3}+\beta \sin x_{1}+f \sin \omega t \sin x_{1}
\end{array}
$$\right.
\]

The author used $x_{1} / 4+x_{1}^{3} / 12$ to approach $\left(1-\cos x_{1}\right)^{2} / \sin ^{3} x_{1}$ in the numerical simulation. Therefore, the critical values of f at which period doublings occur are different from the results given by Van Dooren [2]. The bifurcation diagram for specific system parameter value set $\left(\alpha^{2}=100, \beta=1, c_{1}=0.5, c_{2}=0.05, \omega=2\right)$ as $f=32.0-37.0$ is shown in Fig. 1. At the end of the broadest zone of chaotic behavior, a $4 T$-solution is also obtained. It is evident that the structure of bifurcation diagram is the same as Fig. 1(a) in Ref. [2].

References

[1] H.-K. Chen, Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, Journal of Sound and Vibration 255 (2000) 719-740.
[2] R. Van Dooren, Comments on "Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping", Journal of Sound and Vibration 268 (3) (2003) 632-634, this issue.

[^0]: ${ }^{2}$ Refer to doi: 10.1016/S0022-460X(03)00343-2.
 E-mail address: kanechen@giga.net.tw (H.-K. Chen).

